

Поршневые вакуумные насосы Zenova RP

Инструкция по эксплуатации

ООО «Зенова»

Тел. +7 342 225 00 40

mail: client@zenova.ru

Редакция 4 от 28 октября 2025 г.

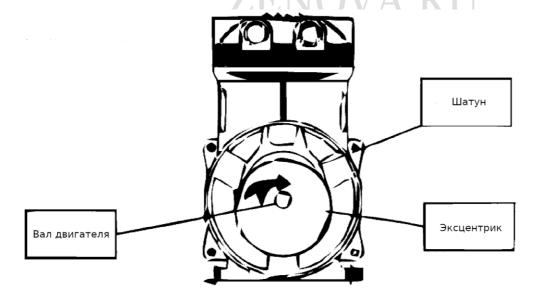
Содержание

Предисловие	3
Устройство насоса	3
Установка насоса	3
Электрическое подключение	
Запуск насоса	
Использование насоса	
Остановка насоса	
Хранение насоса	4
Деталировка	5
Поиск и устранение неисправностей	
Спецификация	
Условия гарантии	

ZENOVA.RU

Предисловие

Zenova RP — это высокотехнологичные поршневые безмасляные насосы. Главные преимущества этих насосов — надежная и предсказуемая производительность, высокое качество изготовления деталей, низкий шум при работе, небольшие размеры и забота об окружающей среде при производстве. Благодаря отсутствию масляного выхлопа эти насосы не загрязняют воздух в помещении, в котором работают.


Насосы Zenova RP применяются в стоматологии, в медицинских лабораториях, в индустрии красоты, в системах автоматизации, в печатающих устройствах, при производстве электронных компонентов и во многих других отраслях, где необходим вакуум.

Пожалуйста, внимательно прочитайте и сохраните эту инструкцию. Это позволит вам пользоваться насосом безопасно и сохранить гарантию на насос.

Устройство насоса

Ниже представлена схема насоса. На валу двигателя закреплен эксцентрик с подшипником, на подшипник установлен шатун. На шатуне установлен поршень, вложенный в цилиндр. Сверху над цилиндром установлен клапанный блок.

Шатун с эксцентриком формируют кривошипно-шатунный механизм. Благодаря этому вращение вала двигателя преобразуется в поступательное (вверх и вниз) движение поршня. Расположенный над поршнем клапанный блок состоит из двух клапанов: впускающего и выпускающего. Когда поршень опускается, внутри цилиндра создается разряжение. Под действием разряжения открывается впускной клапан и закрывается выпускной. Воздух затягивается в цилиндр из входного патрубка насоса. Когда поршень поднимается вверх, в цилиндре создается избыточное давление. Это давление закрывает впускной клапан и открывает выпускной клапан. Через выпускной клапан воздух уходит из цилиндра в выходной патрубок насоса.

Установка насоса

- 1. Устанавливайте насос в хорошо проветриваемом месте. Защитите насос от пыли и влаги.
- 2. Закрепляйте насос при помощи резиновых или пружинных виброгасящих опор для предотвращения распространения вибрации.
- 3. Параметры присоединительной резьбы указаны в спецификации.
- 4. На вход в насос нужно установить вакуумный фильтр. Если в насос попадет пыль или посторонние частицы это может привести к выходу насоса из строя.
- 5. На выход из насоса рекомендуется установить глушитель. Глушитель позволит снизить уровень шума от работающего насоса. Вместо глушителя допустимо использовать воздуховоды, отводящие

- отработанный воздух за пределы рабочего помещения. Диаметр таких воздуховодов должен быть больше диаметра выходного отверстия насоса.
- 6. Подключать насос к электрической сети должен квалифицированный электрик. Перед подключением насоса к электрической сети проверьте, что параметры, указанные на шильдике двигателя, соответствуют параметрам питающей сети.
- 7. Перед включением насоса убедитесь, что корпус насоса заземлен.
- 8. Прежде чем запустить насос, убедитесь, что на насосе нет видимых повреждений.
- 9. Убедитесь, что никакие трубы или шланги не опираются на корпус насоса. Все трубы должны иметь собственные опоры, иначе их вес может повредить насос.

Электрическое подключение

- 1. Подключать насос к электрической сети должен квалифицированный электрик. Перед подключением насоса к электрической сети проверьте, что параметры, указанные на шильдике двигателя, соответствуют параметрам питающей сети.
- 2. Если параметры питающей сети нестабильны используйте стабилизаторы напряжения.

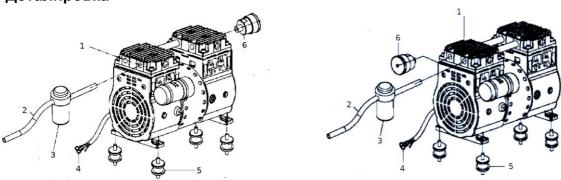
Запуск насоса

- 1. Перед запуском насоса убедитесь, что у насоса и вакуумной линии нет видимых повреждений.
- 2. Убедитесь, что на входе в насос присутствует атмосферное давление, затем включите питание насоса. Обратите внимание, что маломощные поршневые насосы могут не запускаться, если на входе в выключенный насос есть вакуум.
- 3. Если после подачи питания на насос двигатель не вращается выключите насос немедленно и начните поиск неисправности.
- 4. Направление вращения двигателя на этом насосе не играет существенной роли.

Использование насоса

- 1. Насос всегда должен запускаться с атмосферным давлением на входе, однако после запуска он может быть подключен к вакуумной линии в любой момент. Насос можно запускать сразу подключенным к вакуумируемому сосуду при условии, что на момент запуска в вакуумируемом сосуде будет атмосферное давление
- 2. Насос не должен использоваться для перекачки коррозионно-активных, опасных, ядовитых или горючих газов.
- 3. Попадание жидкости в насос не рекомендуется.
- 4. Попадание пыли в насос может вывести его из строя.
- 5. Перекачка насыщенных паров жидкостей может привести к преждевременной коррозии насоса.
- 6. Насос может эксплуатироваться непрерывно при условии достаточного охлаждения.
- 7. По мере износа поршневых колец, будет снижаться и способность насоса создавать вакуум. Менять поршневые кольца нужно в тот момент, когда вас перестанет устраивать уровень создаваемого вакуума. Поршневые кольца являются расходным материалом.
- 8. Насос должен эксплуатироваться при температуре от -10 до +40 °C.
- 9. В стандартном исполнении насос должен эксплуатироваться на высотах не более 1500 метров над уровнем моря. Если вы используете насос на большей высоте закажите специальное исполнение.
- 10. Насос рассчитан на перекачку атмосферного воздуха. Уточняйте у поставщика возможность использования насоса для других газов или газовых смесей.

Остановка насоса


- 1. Для остановки насоса его достаточно просто отключить от сети.
- 2. Насос можно выключать с присоединенной вакуумной линией. Клапана насоса будут какое-то время сдерживать натекания. Однако, выключенный насос не сможет обеспечить полное отсутствие натеканий воздуха в вакуумную линию.
- 3. Во время работы насос может нагреваться. Избегайте прикасаться к поверхности насоса даже после его выключения, пока он не остынет.

Хранение насоса

Если насос не используется длительное время, его необходимо очистить от загрязнений. Упаковать в картонную коробку и хранить в сухом, теплом, защищенном от пыли месте.

Если насос хранился более пяти лет – проверьте эластичность уплотнений и поршневого кольца. При необходимости – замените их. Уплотнения и поршневые кольца являются расходными материалами.

Деталировка

1 — подключение (NFT, внутренняя резьба); 2 — труба или шланг (не входит в комплект поставки); 3 — воздушный фильтр; 4 — провода; 5 — виброопоры; 6 — глушитель.

Могут быть несколько вариантов маркировки проводов:

- Голубой и коричневый к источнику питания, желто-зеленый к заземлению.
- Два черных к источнику питания, два красных к конденсатору, желто-зеленый к заземлению.

1 – крышка рабочей камеры; 2 – клапанный блок; 3 – цилиндр; 4 – корпус рабочей камеры; 5 – поршень с шатуном; 6 – эксцентрик с подшипником; 7 – охлаждающий вентилятор; 8 решетка вентилятора.

Поиск и устранение неисправностей

- 1. Перед любыми действиями с насосом обязательно отключите насос от электрической сети.
- 2. Очищать насос следует чистой сухой тканью как минимум раз в месяц.
- 3. Необходимо не реже одного раза в месяц очищать фильтр на входе и глушитель на выходе из насоса, если соответствующие опции установлены. Забитые фильтра и глушители приводят к снижению уровня вакуума, снижению производительности и повышению энергопотребления насоса.

- 4. Для очистки глушителя или тканевого фильтра, отсоедините их от насоса, разберите и достаньте фильтрующий материал. Промойте чистой водой. Просушите и установите обратно. Если очистка невозможна замените фильтр и глушитель.
- 5. Запрещено прикасаться к насосу во время его работы и до момента его остывания.
- 6. Запрещено перекачивать данным насосом воздух, содержащий пары масла.

Внимание: не проводите ремонт насоса самостоятельно, обратитесь в сервисный центр или к поставщику.

Если насос разбирался в случаях, не описанных в инструкции, гарантия автоматически снимается.

Наблюдаемая проблема	Возможная причина	Рекомендуемое действие
Двигатель насоса не крутится	Нет электропитания	Проверьте электропитание насоса
	Насос поврежден	Свяжитесь с поставщиком по
		поводу ремонта насоса
Неожиданная остановка насоса и	Сработала защита от перегрева	Дождитесь остывания насоса и
высокая температура корпуса		запустите насос заново
	Слишком высокая температура	Дождитесь остывания насоса и
	окружающей среды	запустите насос заново
	Электрический кабель поврежден	Проверьте целостность кабеля,
	771110174 DI	замените при необходимости
Недостаточная	Засорились фильтр или глушитель	Очистите или замените фильтр и
производительность		глушитель
	Насос поврежден	Свяжитесь с поставщиком для
		согласования ремонта насоса

Спецификация

Модель	RP-200V-220	RP-300V-220	RP-550V-220	RP-900V-220	RP-1400V-220
Макс. расход, м³/час	1,8	3,3	6	7,2	9
Мин. остаточное давление, мбар	160	160	80	80	80
Номинальная мощность (Вт)	100	120	280	0,32	450
Напряжение (В)	220	220	220	220	220
Входной патрубок (мм)	6	6	6	6	6
Уровень шума (дБ(А))	48	50	56	56	58
Масса (кг)	1,8	3,2	6	6	8,5
Габаритные размеры (мм)	140×90×120	180×90×140	250×100×170	250×100×170	250×130×190

Модель	RP-2000V-220	RP-2000V-380	RP-3000V-220	RP-3000V-380
Макс. расход, м³/час	12	12	15,6	15,6
Мин. остаточное давление, мбар	80	80	60	60
Номинальная мощность (Вт)	550	550	1,5	1,5
Напряжение (В)	220	380	220	380
Входной патрубок (мм)	6	6	10	10
Уровень шума (дБ(А))	60	60	76	76
Macca	9	9	12	12
Габаритные размеры	250×130×210	250×130×210	270×130×210	270×130×210

Модель	RP-200H-220	RP-300H-220	RP-550H-220	RP-900H-220	RP-1400H-220
Макс. расход, м³/час	1,2	2,1	4,8	6	7,2
Мин. остаточное давление, мбар	80	30	30	30	30
Номинальная мощность (Вт)	100	120	280	320	450
Напряжение (В)	220	220	220	220	220
Входной патрубок (мм)	6	6	6	6	6
Уровень шума (дБ(А))	48	50	56	56	58
Macca	1,8	3,2	6	6	8,5
Габаритные размеры	140×90×120	180×90×140	250×100×170	250×100×170	250×130×190

Модель	RP-2000H-220	RP-2000H-380	RP-3000H-220	RP-3000H-380
Макс. расход, м³/час	10,2	10,2	12	12
Мин. остаточное давление, мбар	30	30	30	30
Номинальная мощность (Вт)	550	550	1,5	1,5
Напряжение (В)	220	380	220	380
Входной патрубок (мм)	6	6	6	6
Уровень шума (дБ(А))	60	60	76	76
Macca	9	9	12	12
Габаритные размеры	250×130×210	250×130×210	270×130×210	270×130×210

Не подключайте прибор через симисторный или тиристорный регулятор скорости. При необходимости регулировки используйте только частотные преобразователи и не выходите за пределы 35–65 Гц.

Условия гарантии

На насосы распространяется гарантия 18 месяцев с даты отгрузки.

Гарантия не распространяется на внешний вид насоса и на расходные материалы (включая уплотнения и поршневые кольца).

Для того чтобы в будущем избежать проблем с заказом запасных частей, перепишите информацию о насосе в форму ниже:

Модель (Model):	Напряжение питания (V):
Серийный номер (S/N):	Потребляемый ток (А):
Расход воздуха (Air flow):	Частота питающей сети (Hz):
Создаваемый вакуум (Max. vacuum):	Число фаз (Phase):
Скорость вращения двигателя (rpm):	Потребляемая мощность (kW):