

Шестеренные насосы Vetlan KCB-A

Инструкция по эксплуатации

ООО «Зенова»

Тел. +7 342 225 00 40

mail: client@zenova.ru

Редакция 14 от 21 апреля 2025 г.

Содержание

Введение	3
Расшифровка обозначения насосов КСВ-А	
Внутреннее устройство и принцип действия	
Технические характеристики	4
Предохранительный клапан	4
Перемещение и хранение насоса	5
Монтаж насоса	5
Проверка и регулировка соосности	7
Электрическое подключение	9
Запуск насоса	11
Остановка насоса	12
Неисправности и их устранение	12
Гарантийные условия	

zenova.ru

Введение

Шестеренные насосы серии КСВ-А способны перекачивать термальные и смазочные масла, сырую нефть, дизельное топливо и прочие жидкости с похожими свойствами. А специальные версии насосов КСВ-А с шестернями из латуни (бронзы) способны перекачивать нефтепродукты с низкой температурой вспышки — например, бензин. Перекачиваемые жидкости не должны быть коррозионно-активными, не должны содержать твердые или волокнистые частицы. Запрещено перекачивать воду этими насосами.

Максимальная температура перекачиваемой жидкости зависит от модификации насоса:

- +80 °C для насосов со стандартными набивными уплотнениями (исполнение О).
- + 200 °C для насосов со стандартными механическими уплотнениями (исполнение M).
- +250 °C для насосов с набивными уплотнениями с пропиткой из графита (исполнение G).

В спецификации к насосам указано номинальное потребление тока. В реальности оно может отличаться и превышать номинальное в 1,5 раза. Это нужно учитывать при подборе автомата защиты.

Вязкость перекачиваемой жидкости должна быть в пределах от 35 до 1500 сСт. Специальные версии насосов с уменьшенным числом оборотов двигателя могут перекачивать жидкости с вязкостью до 50 000 сСт.

При перекачивании жидкостей с низкой вязкостью (ниже 35 сСт) возможно снижение производительности и появление утечек.

Расшифровка обозначения насосов КСВ-А

Рассмотрим обозначение насосов на примере модели KCB-A55-CCG/0.5/4/C

- К насос с предохранительным (байпасным) клапаном
- СВ-А обозначение серии шестеренного насоса
- 55 номинальный расход насоса в л/мин
- С корпус из чугуна (S корпус из нержавеющей стали, В корпус из бронзы)
- С шестерни из чугуна
- G набивное уплотнение с графитовой пропиткой (М механическое уплотнение, О стандартное набивное уплотнение).
- 0.5 максимальное противодавление в напорной линии в MPa (1 MPa = 10 бар)
- 4 полюсность электродвигателя (4 = 1450 об/мин, 6 = 960 об/мин)
- С консольный тип исполнения

Внутреннее устройство и принцип действия

Насосы серии КСВ-А представляют собой горизонтальные насосы объемного типа.

Насос состоит из корпуса, крышки корпуса, двух шестерен, двух валов (шпинделей), гнезда подшипника, подшипника, уплотнения, предохранительного клапана.

Насосы КСВ-А имеют консольное исполнение: насос и электродвигатель независимы друг от друга, их монтируют на единой раме и соединяют посредством полумуфты.

При работе насоса одна из шестерен насоса является ведущей. На нее подается энергия вращения электродвигателя. Другая шестерня является пассивной (ведомой). Она зацепляется с ведущей шестерней и вращается за счет вращения ведущей шестерни.

Перед началом работы в рабочую камеру насоса необходимо залить жидкость. Жидкость должна находиться как на напорной, так и на всасывающей стороне. Поверхностное натяжение жидкости обеспечивает герметичность зазора между шестернями. За счет вращения шестерен на всасывающей стороне насоса создается разрежение. Перекачиваемая жидкость устремляется в зазор между шестернями, проходя между, и под давлением выходит с напорной стороны.

Технические характеристики

Расход: 1,1 м3/ч $^{\sim}$ 64 м3/ч (18,3 л/мин $^{\sim}$ 1060 л/мин) Напорное давление: 3,3 бар $^{\sim}$ 14,5 бар (33 м $^{\sim}$ 145 м) Диаметр входного и выходного патрубков: 3/4 " $^{\sim}$ 100 мм

КПД: 41% ~ 59%

Электродвигатели 50 Гц/380 В Мощность 1,5 кВт ~ 30 кВт Количество полюсов обмотки 4Р или 6Р Класс энергоэффективности IE3 Скорость вращения выходного вала: 1450 об/мин - четырехполюсный двигатель (4Р) 970 об/мин - шестиполюсный двигатель (6Р)

Предохранительный клапан

Встроенный предохранительный (байпасный) клапан

Все насосы КСВ-А (кроме насосов с рубашкой обогрева) по умолчанию оснащены встроенным предохранительным байпасным клапаном, который открывается при избыточном давлении на напорной линии и возвращает жидкость из напорной камеры обратно во всасывающую камеру насоса для уменьшения давления в напорной линии.

Встроенный предохранительный клапан при срабатывании обеспечивает циркуляцию масла внутри насоса. Его не требуется подключать к внешним трубопроводам.

Давление срабатывания встроенного предохранительного клапана предварительно настроено на заводе. Однако если в силу каких-то причин его настройки сбились, то возможно настроить давление срабатывания клапана путем вращения регулировочного винта на конце клапана. Давление срабатывания клапана должно на 40% превышать номинальное давление насоса.

Внимание: обязательно настройте давление срабатывания байпасного клапана по манометру на месте установки при первом запуске. В противном случае в гарантии может быть отказано.

Встроенный предохранительный клапан рассчитан лишь на кратковременную защиту насоса и напорного трубопровода от избыточного давления. Он не рассчитан на постоянную работу.

Внешний предохранительный клапан

Если давление в напорной линии длительное время превышает максимальное расчетное давление насоса, то для стравливания избыточного давления следует отдельно приобрести и установить на напорную линию внешний байпасный клапан, рассчитанный на длительную работу.

Также, на насосы с рубашкой обогрева нужно поставить либо сторонний байпасный клапан, либо сбросной клапан. Оба - на максимальное давление насоса, иначе гарантии не будет.

Перемещение и хранение насоса

- 1. Насосы КСВ-А должны храниться в помещениях температурой от -10 до +40 градусов Цельсия и влажностью относительной влажностью от 20 до 70%.
- 2. При перемещении насосов весом более 30 кг следует использовать подъемное оборудование.
- 3. При использовании подъемного оборудования следует зацеплять насосы за раму. Не допускается зацеплять концы тросов (и иных подъемных приспособлений) за рабочий вал насоса/двигателя, а также за соединяющую их муфту.

Монтаж насоса

- 1. Перед установкой насоса проверьте насос на наличие внешних повреждений. Не поврежден ли электродвигатель от сырости. Проверьте, нет ли загрязнений и пыли во входном и выходном патрубках насоса.
- 2. Установите насос таким образом, чтобы обеспечить нормальное охлаждение корпуса воздухом во время работы. Не накрывайте насос.
- 3. Проверьте соосность валов насоса и двигателя. Расхождение не должно превышать 0,1 мм. При необходимости проведите центровку валов (см. раздел «Проверка и регулировка соосности»).
- 4. Схема монтажа трубопроводов может быть различной. Насосы могут перекачивать жидкости как в закрытом, так и в открытом контуре. В том и другом случае следует обеспечить защиту напорной линии трубопровода от избыточного давления. Для этого может быть использована предохранительная запорная арматура. Также защита от избыточного давления может быть реализована с использованием защитной автоматики.
- 5. Схема монтажа может предусматривать как работу с положительным подпором (рекомендуется), так и работу в режиме самовсоса (но под заливом, самовсос посуху недопустим). Если высота самовсоса превышает 2,5 метра, необходимо установить на всасывающей линии донный обратный клапан.
- 6. При подключении трубопроводов к насосу убедитесь в их чистоте. При необходимости промойте их изнутри водой или паром.
- 7. При подключении трубопроводов убедитесь, что их вес не передается на насос. Трубопроводы должны иметь поддерживающие крепления как можно ближе к корпусу насоса. Передача внешнего веса на корпус насоса может привести к перекосу корпуса и нарушению точности прилегания шестерен друг к другу.
- 8. Убедитесь, что соединения трубопровода герметичны. Если в насос попадет воздух его работа будет нарушена.

- 9. На всасывающую и напорную линии непосредственно рядом с насосом необходимо установить манометры для контроля давления во время работы насоса.
- 10. Рекомендуется установить запорные клапаны на всасывающей и напорной линии для перекрытия потока жидкости в случае необходимости.
- 11. Если есть риск попадания механических примесей в насос во время его работы, установите на входе металлический сетчатый фильтр.

 Если на дне резервуара подачи жидкости могут образоваться твердые частицы, то лучше

установить конец всасывающего трубопровода на 10-20 см выше уровня дна резервуара.

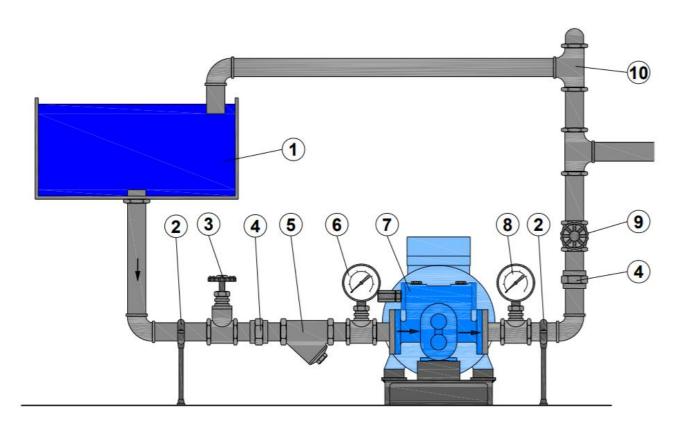
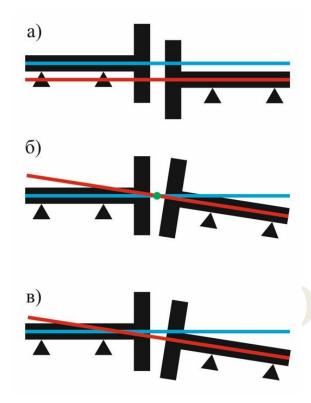


Схема 1. Один из возможных примеров монтажа линии с использованием шестеренного насоса КСВ-А.


На указанной выше схеме цифрами обозначены:

- 1. Резервуар подачи жидкости
- 2. Поддерживающие крепления трубопроводов
- 3. Запорный клапан на всасывающей линии
- 4. Трубное соединение
- 5. Металлический сетчатый фильтр
- 6. Манометр на всасывающей линии
- 7. Шестеренный насос
- 8. Манометр на напорной линии
- 9. Запорный клапан на напорной линии
- 10. Внешний предохранительный клапан. Этот открывается при избыточном давлении в напорной линии и позволяет вернуть часть жидкости обратно в резервуар подачи жидкости. Тем самым стравливается избыточное давление в напорной линии.

Проверка и регулировка соосности

Безопасная эксплуатация насосного оборудования напрямую зависит от правильной центровки валов приводного двигателя и самого насоса. Правильная центровка насоса с электродвигателем позволяет минимизировать вибрацию агрегата, которая со временем вызывает преждевременный выход подшипников из строя, искривление валов и износ рабочих органов. Наиболее остро такая проблема стоит в промышленности для насосов с большой объемной подачей, укомплектованными двигателями большой мощности.

Эта процедура необходима для агрегатов, у которых соединение между насосом и электродвигателем выполнено с помощью муфты.

Виды несоосности

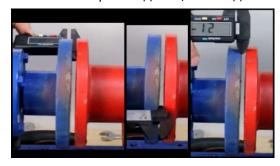
Чтобы правильно выполнить соединение насоса с электродвигателем нужно не допустить возникновения несоосности (коллинеарности) между валами. Геометрические оси вращения валов насоса и приводного электродвигателя, связанных между собой муфтой, при неправильной установке могут не совпадать. Такое расхождение может быть параллельным (а), угловым (б) или смешанным (в).

При параллельной неосоосности оси вращения валов располагаются в одной плоскости на определенном промежутке друг от друга по вертикали или горизонтали. Величина несоосности этого типа равна расстоянию между осями валов в миллиметрах.

При **угловой несоосности** оси вращения валов располагаются под углом друг к другу, в результате чего возникает раскрытие полумуфт. Чтобы численно оценить величину несоосности

этого типа нужно измерить смещение оси вращения вала двигателя относительно оси вала насоса в двух местах на расстоянии 100 мм друг от друга. После этого полученные данные складываются, а полученный результат делится на расстояние между точками замера. Величина углового раскрытия муфт выражается в мм/100мм.

Смешанная несоосность характеризуется расхождением осей вращения валов как в вертикальной плоскости, так и по углу.


Для измерения расхождения валов используются как современные лазерные, так и аналоговые приборы

Центровка валов насоса и электродвигателя выполняется:

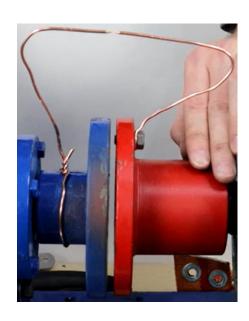
- после установки нового насосного оборудования;
- по окончании капитального ремонта с заменой трубопроводных линий;
- при возникновении вибрации и повышенного шума во время эксплуатации;
- если температура подшипниковых щитов превышает номинальное значение.

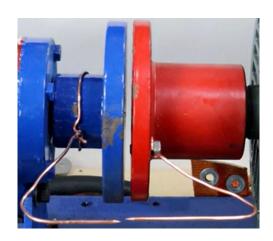
Как производится центровка

Если визуально заметны различия в зазорах или измерения с помощью штангенциркуля показывают расхождения, необходимо выполнить центровку.

Перед выполнением центровки необходимо определить, какой из агрегатов — насос или двигатель — является стационарным, а какой подвижным. Поэтому за опорную линию с нулевыми координатами принимается ось вращения насоса, по результатам измерений производится центровка двигателя относительно неподвижного агрегата.

Горизонтальная несоосность устраняется перемещением корпуса электродвигателя влево или вправо с одновременным контролем углового отклонения. Вертикальная соосность обеспечивается с помощью регулировочных подкладок, устанавливаемых под опоры двигателя.


При наличии специальных измерительных приборов опытный специалист может быстро устранить несоосность. Однако при их отсутствии соосность можно выставить и своими руками с помощью линейки, штангенциркуля и пластинчатых щупов. Для получения подробной видеоинструкции отсканируйте **QR-код**:



Для проверки коллинеарности валов (1,3) можно использовать два отрезка жёсткой проволоки (2), закреплённых на полумуфтах со стороны двигателя и насоса (4) на расстоянии около 100 мм друг от друга. Концы проволок загибают навстречу друг другу; для повышения точности измерений им придают форму конуса. Между остриями этих импровизированных индикаторов должен оставаться зазор (В) не более 1 мм. Полумуфты, скреплённые болтами, медленно проворачивают вручную, измеряя зазор щупом через каждые 90° в плоскости, перпендикулярной оси вращения. По результатам измерений принимается решение о способе устранения возможной неколлинеарности.

Если при вращении валов изменяется величина зазора между «иголками», то это *угловая несоосность*. Вертикальную же исправляют с помощью подкладок под передние или задние лапы двигателя (иногда насоса), горизонтальную — смещением передней или задней части двигателя в сторону.

Если при вращении валов «иголки» уходят в сторону друг от друга — это параллельная несоосность. Устраняется смещением двигателя (и передней и задней части одновременно) по вертикали с помощью подкладок под лапы, либо в сторону. Сопряжение двигателя с приводимым механизмом посредством жестких муфт различной конструкции требует **точного** соблюдения соосности валов.

	Скорость	Допустимо	Отлично
Короткие гибкие муфты			
Смещение	750	0.19	0.09
	1500	0.09	0.06
	3000	0.06	0.03
97	6000	0.03	0.02
Излом	750	0.13	0.09
(раскрытие полумуфт на	1500	0.07	0.05
100 мм диам-ра)	3000	0.04	0.03
77	6000	0.03	0.02

Электрическое подключение

- 1. Заранее подключите электропитание и тщательно проверьте затяжку всех крепежных элементов, и если какие-либо детали ослаблены, подтяните их.
- 2. Сначала включайте электродвигатель, а затем открывайте клапаны.
- 3. Электродвигатель подключайте согласно общеустановленным правилам (ПУЭ)
- 4. Включите источник питания и проверьте правильность направления вращения двигателя в соответствии с направлением стрелки на двигателе.
- 5. Не забудьте о тепловой защите: двигатель подключайте через индивидуальный тепловой автомат защиты типа D с учетом максимального тока двигателя; автоматы типа C нежелательны, но если ставите их, номинал должен быть на один уровень выше.
- 6. Потребляемый насосом ток изменяется вместе с рабочим давлением. Во избежание перегрева и поломки изделия, используйте насос только при расчетном давлении.

7. Учитывайте защиту по напряжению: двигатель подключайте через реле напряжения или дифавтомат. Если питание трёхфазное — устройство обязано иметь защиту от перекоса фаз. Не подключайте прибор через симисторный или тиристорный регулятор скорости. При необходимости регулировки используйте только частотные преобразователи и не выходите за пределы 35–65 Гц.

Пределы напряжения:

Трёхфазная сеть (380 B): допустимое отклонение ±7% (353,4 B – 406,6 B).

Однофазная сеть (220 B): допустимое отклонение ±7% (204,6 B – 235,4 B).

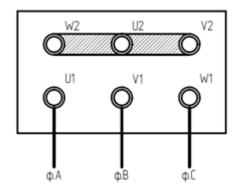
- о **Схема «звезда»** двигатель стартует мягче, с меньшим пусковым током.
- **Схема «треугольник»** двигатель работает на полной мощности, но при запуске ток резко возрастает.

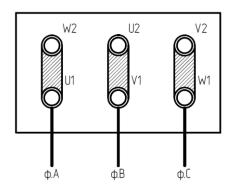
1. Двигатели малой мощности (до 3 кВт включительно)

Можно сразу подключать по схеме «треугольник» и работать так постоянно.

2. Двигатели от 3,3 кВт и выше

Чтобы снизить пусковой ток, используют один из способов:

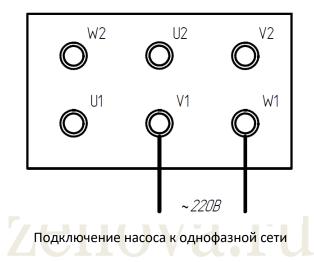

- Способ A (предпочтительный, но дороже): подключение через устройство плавного пуска (УПП). Оно уменьшает ток при запуске, защищает двигатель и продлевает срок службы. Вместо УПП можно поставить частотный преобразователь (ПЧ). Но важно следить, чтобы после запуска рабочая частота была 35–60 Гц, иначе двигатель можно повредить.
- Способ Б (проще и дешевле, но менее безопасно): двигатель запускается в схеме «звезда», а после разгона специальное устройство переключает его в «треугольник» для работы на полной мощности.


Подключение «звезда» (для сети 0,38 кВ с заземлённой нейтралью, 4 провода)

- Фаза A → клемма U1
- Фаза В → клемма V1
- Фаза С → клемма W1
- Нейтраль N → клеммы W2, U2, V2

Подключение «треугольник» (для сети 0,38 кВ с изолированной нейтралью, 3 провода)

- Фаза A → клеммы U1 и W2
- Фаза В → клеммы V1 и U2
- Фаза С → клеммы W1 и V2


Подключение по схеме «треугольник»

Подключение по схеме «звезда»

Правильный способ подключения указан на шильдике двигателя.

Для подключения насоса в **однофазном исполнении**, подключите к однофазной сети 220В клеммы V1 и W1. Подключите заземляющую клемму на корпусе изделия. При подключении клемм убедитесь в отсутствии коротких замыканий, а также масла, металлической стружки и других посторонних предметов в близости от токопроводящих частей изделия.

Для правильного направления вращения проверьте фазы. Если насос после подключения вращается в противоположную сторону, поменяйте местами фазы A и В. Перед подключением убедитесь, что рабочее напряжение и частота сети соответствуют требованиям шильдика электродвигателя.

Запуск насоса

Перед пуском насоса убедитесь в следующем:

- 1. Откройте все запорные устройства на напорном и всасывающем трубопроводе.
- 2. Убедитесь, что все соединения герметичны.
- 3. Заполните корпус насоса перекачиваемой жидкостью. Насос не должен работать всухую!

Внимание: эти насосы не предназначены для перекачивания воды. Перекачиваемая жидкость в них не только охлаждает, но и смазывает рабочие элементы.

- 4. Запустите насос, подав питание на двигатель.
- 5. При первом пуске убедитесь, что насос нормально перекачивает жидкость, а вал вращается в нужном направлении: со стороны головы насоса, вал должен вращаться против часовой стрелки. Если направление неправильное, остановите прибор насос и переподключите двигатель.
- 6. С помощью манометра в напорной линии убедитесь, что давление не превышает максимально допустимое для насоса.

- 7. Проверьте, чтобы шум и вибрации были умерены. Если шум и вибрации чрезмерны, выключите насос.
- 8. Рассмотрите, есть ли утечки перекачиваемой жидкости из соединений, при их наличии остановите прибор и устраните проблему. При этом утечки через уплотнения допустимы, но не чрезмерные. Если у вас установлено набивное уплотнение (исполнение G или O), подтяните его при избыточной течи, но не перетягивайте: перетяжка вызывает перегрев и быстрый износ уплотнения. Механическое же уплотнение (исполнение M) с утечками замените полностью.
- 9. Не используйте теплоизоляцию с насосом. Изоляция мешает охлаждению и может привести к перегреву подшипников и других узлов.

Остановка насоса

Останавливайте прибор пошагово:

- 1. Сначала отключите питание от электросети.
- 2. Затем перекройте запорные клапаны на всасывающей и напорной линии (если они установлены).

Неисправности и их устранение

Вид неисправности	Возможная причина	Как устранить
Насос не перекачивает жидкость или поток жидкости слишком мал	Слишком большая высота всасывания жидкости	Повысить уровень жидкости во всасывающем резервуаре или поднять резервуар
	Недостаточно герметичные соединение на всасывающей линии	Затянуть соединения, устранить утечки
	Неправильное направление вращения насоса	Правильно подключить электродвигатель
	Слишком высокая вязкость жидкости	Подогреть жидкость для снижения ее вязкости Подобрать насос с более низкой частотой вращения
	Закрыт запорный клапан на всасывающей линии	Открыть клапан
	Засорение всасывающих трубопроводов, клапанов или фильтров	Очистить входную линию, чтобы жидкость могла свободно попадать в насос
Чрезмерные утечки через уплотнения	Набивное уплотнение ослабло	Затянуть набивное уплотнение, но не слишком сильно. Слишком сильная затяжка набивного уплотнения приведет к его перегреву и быстрому износу

	Повреждено механическое уплотнение	Заменить насос или заменить механическое уплотнение (для этого придется вскрыть корпус насоса)
	Слишком высокое давление в корпусе насоса	- Убедиться, что напорная линия открыта, в ней нет засоров
		- Установить внешний байпасный предохранительный клапан в напорной линии
При работе насоса наблюдается чрезмерный шум или вибрации	Всасывающая труба или фильтры засорены или закрыты	- Прочистите всасывающую линию.
		- Откройте все запорные устройства на напорной линии. Жидкость должна свободно проникать в насос
	Всасывающая труба неглубоко проникает в воду	Погрузите всасывающую трубу глубже в перекачиваемую жидкость
	Воздух поступает во всасывающую линию	Проверьте и затяните все соединения на всасывающей линии
	Слишком большое	- Проверьте не закрыты ли запорные
	линии — — — — — — — — — — — — — — — — — —	клапаны напорной линии - Проверьте нет ли засорений в напорной линии
		- При необходимости установите внешний предохранительный байпасный клапан на напорной линии
	Вязкость жидкости слишком высока	- Подогреть жидкость для снижения ее вязкости
		- Подобрать насос с более низкой частотой вращения
	Высота всасывания выше номинальной (кавитация)	- Повысить уровень жидкости во всасывающем резервуаре или поднять резервуар (при возможности перевести насос в режим работы с положительным подпором на входе)
		- Снизить температуру перекачиваемой жидкости
	Шестерни или их шпиндели загрязнены или изношены	Если возможно, прочистить внутренние детали. Если нет, то насос подлежит замене
Детали насоса быстро	Перекачиваемая жидкость	Установить фильтр на входе в насос.
изнашиваются	содержит твердые	Не перекачивать жидкости, которые

	абразивные частицы или склонна к кристаллизации	могут кристаллизоваться
	Насос периодически работает «всухую»	Контролировать наличие жидкости во всасывающей линии
	Вязкость жидкости ниже требуемой	- Охладить перекачиваемую жидкость - Использовать насосы со специальными шестернями для низковязких жидкостей
Электродвигатель перегревается во время работы	Давление в напорной линии выше номинального	- Убедиться, что напорная линия не закрыта и не засорена - Переконфигурировать напорную линию
		- Применить внешний байпасный предохранительный клапан на напорной линии
	Неправильное электрическое подключение	Проверить правильность подключения двигателя, устранить нарушение
	Некорректные параметры питающего тока	Проверьте вольтаж и частоту питающего тока
	Температура окружающего воздуха слишком высока	Обеспечьте хорошую вентиляцию в помещении для охлаждения электродвигателя.
	Задняя крышка насоса забилась пылью	Прочистить электродвигатель
Насос перегревается во время работы	Насос работает «всухую»	Включать насос только при наличии жидкости во всасывающей линии
	Набивное уплотнение затянуто чересчур сильно	Ослабить набивное уплотнение
	Температура перекачиваемой жидкости превышает допустимую	Снизить температуру перекачиваемой жидкости

Внимание: не проводите ремонт насоса самостоятельно, обратитесь в сервисный центр или к поставщику.

Если насос разбирался в случаях, не описанных в инструкции, гарантия автоматически пропадает.

Гарантийные условия

На насосы распространяется гарантия 18 месяцев с даты отгрузки.

Гарантия на торцевое уплотнение распространяется на первый месяц после отгрузки, так как уплотнение — расходный материал: его состояние зависит от того, сколько абразива будет в перекачиваемой жидкости. При полном отсутствии абразива срок эксплуатации торцевого уплотнения — 2 года.

Поставщик вправе отказать в гарантийном ремонте при:

- наличии на шестернях, валу и прочих внутренних деталях насоса следов абразивного износа (знак того, что клиент использовал прибор для загрязненных жидкостей);
- отсутствии установленных манометров на напорной и всасывающей линиях насоса и как следствие невозможности контролировать давление в линии;
- несоблюдении других требований данной инструкции при установке, запуске, остановке оборудования, а также при нарушении мер предосторожности.

zenova.ru